Effect of chloride on pH microclimate and electrogenic Na+ absorption across the rumen epithelium of goat and sheep.
نویسندگان
چکیده
Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl-/HCO3- and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl- conductance. We investigated whether Cl- has an additional effect on electrogenic Na+ absorption via NSCC. NSCC was estimated from short-circuit current (Isc) across epithelia of goat and sheep rumen in Ussing chambers. Epithelial surface pH (pHs) was measured with 5-N-hexadecanoyl-aminofluorescence. Membrane potentials were measured with microelelectrodes. Luminal, but not serosal, Cl- stimulated the Ca2+ and Mg2+ sensitive Isc. This effect was independent of the replacing anion (gluconate or acetate) and of the presence of bicarbonate. The mean pHs of rumen epithelium amounted to 7.47 +/- 0.03 in a low-Cl- solution. It was increased by 0.21 pH units when luminal Cl- was increased from 10 to 68 mM. Increasing mucosal pH from 7.5 to 8.0 also increased the Ca2+ and Mg2+ sensitive Isc and transepithelial conductance and reduced the fractional resistance of the apical membrane. Luminal Cl- depolarized the apical membrane of rumen epithelium. 5-Nitro-2-(3-phenylpropylamino)-benzoate reduced the divalent cation sensitive Isc, but only in low-Cl- solutions. The results show that luminal Cl- can increase the microclimate pH via apical Cl-/HCO3- or Cl-/OH- exchangers. Electrogenic Na+ absorption via NSCC increases with pH, explaining part of the Cl- effects on Na+ absorption. The data further show that the Cl- conductance of rumen epithelium must be located at the basolateral membrane.
منابع مشابه
Evidence for NHE3-mediated Na transport in sheep and bovine forestomach.
Na absorption across the cornified, multilayered, and squamous rumen epithelium is mediated by electrogenic amiloride-insensitive transport and by electroneutral Na transport. High concentrations of amiloride (>100 μM) inhibit Na transport, indicating Na(+)/H(+) exchange (NHE) activity. The underlying NHE isoform for transepithelial Na absorption was characterized by mucosal application of the ...
متن کاملModulation of urea transport across sheep rumen epithelium in vitro by SCFA and CO2.
Urea transport across the gastrointestinal tract involves transporters of the urea transporter-B group, the regulation of which is poorly understood. The classical stimulatory effect of CO(2) and the effect of short-chain fatty acids (SCFA) on the ruminal recycling of urea were investigated by using Ussing chamber and microelectrode techniques with isolated ruminal epithelium of sheep. The flux...
متن کاملCALL FOR PAPERS: Mitochondrial Function/Dysfunction in Health and Disease Evidence for NHE3-mediated Na transport in sheep and bovine forestomach
Rabbani I, Siegling-Vlitakis C, Noci B, Martens H. Evidence for NHE3-mediated Na transport in sheep and bovine forestomach. Am J Physiol Regul Integr Comp Physiol 301: R313–R319, 2011. First published May 25, 2011; doi:10.1152/ajpregu.00580.2010.—Na absorption across the cornified, multilayered, and squamous rumen epithelium is mediated by electrogenic amiloride-insensitive transport and by ele...
متن کاملModulation of electroneutral Na transport in sheep rumen epithelium by luminal ammonia.
Ammonia is an abundant fermentation product in the forestomachs of ruminants and the intestine of other species. Uptake as NH3 or NH4+ should modulate cytosolic pH and sodium-proton exchange via Na+/H+ exchanger (NHE). Transport rates of Na+, NH4+, and NH3 across the isolated rumen epithelium were studied at various luminal ammonia concentrations and pH values using the Ussing chamber method. T...
متن کاملFunctional and molecular biological evidence of SGLT-1 in the ruminal epithelium of sheep.
Because of the effective catabolism of D-glucose to short-chain fatty acids by intraruminal microorganisms, the absorption of D-glucose from the rumen was thought to be of minor importance. However, clinical studies suggested that significant quantities of D-glucose are transported from the ruminal contents to the blood. We therefore tested the ruminal epithelium of sheep for the presence of Na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 291 2 شماره
صفحات -
تاریخ انتشار 2006